

Faculty: - Pharmaceutical Sciences

Department: All Discipline

Semester: I

Name of Subject: Modern Analytical Techniques (Theory)

Subject Code: PGMP101

TEACHING & EVALUATION SCHEME:-

Sr. No	Subject Code	Name of the Subject	(1	Tea Sc Hour	ichin hem s/W	ıg e eek)		Evaluatio						e			
								,	Theory			Practical					Total
							Sess	ional	Unive	iversity Total		Sessional		University		Total	
			Т	S	Р	Total	Ex	am	Exam			Exa	ım	Exa	ım		
							Mark	Hrs	Mark	Hrs		Mark	Hrs	Mark	Hrs		
							s		s			s		S			
1	PGMP101	Modern Analytical Techniques	4	-	6	10	30	1.5	70	3	100	30	6	70	6	100	200

OBJECTIVES:-

- To make students familiar with the principles of modern analytical techniques and its application in pharmacy
- To give training in use of the technique & its applications in day to day practice
- To build on the basics learned at UG level & give latest advances in the area
- To give more stress on application based knowledge than instrumentation based one
- To give hands on training on use of as many different sophisticated instruments as possible

PREREQUISITES:-

- Minimum two UG level courses in Pharmaceutical analysis
- A B. Pharm. Degree from any AICTE approved institution or its equivalent

COURSE OUTLINE:-

Sr.	Course Content	Hours
No.		
1	UV – Visible spectroscopy: Theory, chromophores and their interaction with EMR,	06
	solvent effects, instrumentation (components and their function) & applications	
	including multi-component assay and derivative spectra. Woodward-Fieser and	
	Fieser-Kuhn rules for calculating absorbance maximum and interpretation of spectra.	
2	Infrared spectroscopy: Introduction, basic principles, instrumentation (components	06
	and their function), sampling techniques, interpretation of spectra and applications.	
	Theory and applications of FTIR, ATR and NIR.	
3	Nuclear Magnetic Resonance Spectroscopy: Fundamental principle and theory of	10
	proton NMR, instrumentation, solvents, chemical shift, spin-spin coupling, coupling	
	constant, spin-spin decoupling, proton exchange reactions, simplification of complex	
	spectra, FT- NMR, 2D-NMR, applications in pharmacy and interpretation of spectra.	
	13C NMR Spectroscopy: Peak assignments, off resonance decoupling, selective	
	proton decoupling, chemical shift equivalence, chemical shifts and spin coupling and	
	its structural applications.	
4	Mass Spectroscopy: Basic principle and instrumentation, ion formation and type,	08
	fragmentation process and fragmentation pattern, chemical ionization mass	
	spectroscopy (CIMS), field ionization MS (FIMS), Fast atom bombardment MS	
	(FAB-MS), matrix assisted laser desorption/ ionization MS (MALDI-MS),	
	Interpretation of spectra and application in pharmacy, Surface Ionization MS(SIMS).	
5	Optical Rotary Dispersion: Principle, Plain curves, curves with cotton effect,	03
	octant rule and its applications with example, circular dichroism and its relation to	
	ORD.	
6	Thermal Methods of Analysis : Thermoanalytical techniques: Differential	03
	Scanning Calorimetry (DSC), Thermogravitry (TG), Thermo mechanical analysis	
	(TMA): Principles instrumentation and applications (including interpretation of data)	
	in pharmacy.	

7	Chromatographic techniques: Classification of chromatographic methods based	18
	on mechanism of separation. Theories of chromatographic separation. Principles,	
	elution techniques, instrumentation, derivatization and application of GC, HPLC,	
	HPTLC. Principles, elution techniques, applications of ion exchange and ion pair	
	chromatography, affinity chromatography, Size exclusion chromatography, chiral	
	chromatography, super fluid chromatography (SFC),UPLC, GC-MS, short column	
	chromatography, flash chromatography, medium pressure LC and LC-MS.	
8	Radio analytical techniques used in pharmaceuticals: Isotopic dilution methods,	02
	Radioimmunoassay, ELISA etc.	
9	Electrophoresis: Theory and principles, classifications, instrumentation, moving	02
	boundary electrophoresis, Zone Electrophoresis (ZE), Isoelectric focusing (IEF) and	
	applications.	
10	Ambiantian of Transmittance Electron Microscopy (TEM) and Scopping Electron	02
10	Application of Transmittance Electron Microscopy (TEW) and Scanning Electron	02
	Microscopy (SEM).	
	Total	60

Faculty: - Pharmaceutical Sciences Department: All Discipline Semester: I Name of Subject: Modern Analytical Techniques (Practical) Subject Code: PGMP101P

Module-1: UV/Visible spectrum scanning of a few organic compounds for UV- absorption and correlations of structures and isosbestic point in case of mixtures.

Module-2: Effect of solvents and pH on UV spectrum of drugs

Module-3: Simultaneous estimation of combination formulations (minimum of 4 experiments): e.g. Vitamins, Oral antidiabetics, NSAIDs, Antimicrobials, Antihistamines, Antihypertensive etc.

Module-4: Experiments based on the application of derivative spectroscopy.

Module-5: Experiments based on HPLC (Isocratic and Gradient elution) techniques.

Module-6: Interpretation of drugs by IR spectra

Module-7: Workshop of spectroscopy: (UV, IR, NMR, MASS) structural elucidation of few compounds

Module-8: Separation of protein drug substances by electrophoresis

Module-9: Use of fluorimeter for analysis of Pharmacopoieal compounds.

Module-10: Experiments of Chromatography. (a) Thin Layer Chromatography, (b) Paper Chromatography.

Module-11: Any other relevant experiments based on theory.

LEARNING OUTCOMES:-

• At the end of the course, the student will be able to understand the fundamental concept of modern analytical techniques, which is important for qualitative as well as quantitative analysis of drug substances and drug product.

TEACHING & LEARNING METHODOLOGY:-

• Faculty member/s shall explain in a class room using black board and multimedia projector.

BOOKS RECOMMENDED:-

- 1. A.H. Beckett, J.B. Stenlake Practical Pharmaceutical Chemistry, Part I and Part II (CBS Publishers Delhi
- Chromatographic Analysis of Pharmaceuticals, A. John, Adamovics, Cytogan Corporation, Princeton, NJ.
- Clarke's Analysis of Drugs and Poisons, A.C.Moffat, M. David Osselton, Brain Widdop, L. Y. Galichet. 3rd edition, Pharmaceutical Press.
- 4. Colorimetric Methods of analysis- F. D. Snell and C. T. Snell (Van Nostrand Reinhold Company, N.Y.).
- Handbook of Instrumental techniques for analytical chemistry, Frank Settle,1st edition, Pearson education, Singapore.
- 6. HPTLC Quantitative Analysis of Pharmaceutical Formulations P. D. Sethi.
- Identification of Drugs and Pharmaceutical Formulations by Thin Layer Chromatography, 2nd Edition, P. D. Sethi, CBS Publishers and Distributers, New Delhi.
- 8. Instrumental Methods of Analysis Willard, Merritt, Dean, CBS, Delhi.
- 9. Instrumental Methods of Chemical Analysis, B.K. Sharma, Goel Publication House, Meerut, India.
- 10. Instrumental Methods of Chemical Analysis, G. W. Ewing, McGraw Hill Book Co, NY.
- Liquid Chromatography Mass Spectrometry, W. M. A. Niessen, J. Van Der Greef, Vol. 58.
- Modern Methods of Pharmaceutical Analysis, Vol 1, 2, RE Schirmer, Franklin Book Co, PA.

- 13. NMR spectroscopy (Basic Principles, concepts and application in Chemistry) Herald Gunther (John Wiley and Sons), NY..
- 14. Organic Spectroscopy William Kemp, 3rd Edition.
- 15. P.D. Sethi Quantitative Analysis of Drugs in Pharmaceutical formulations (VBS Publishers, Delhi).
- 16. Pharmaceutical Analysis Modern Methods Part A, Part B, James W. Munson 2001.
- 17. Practical Pharmaceutical Chemistry, Part two, A. H. Beckett & J. B. Stenlake 4th edition.
- Principles of Instrumental Analysis by Donglas A. Skoog, James, J. Leary, 4th Edition.
- 19. Remington's Pharmaceutical Sciences, J. P. Remington, Mack Pub. Co., Pennsylvania.
- 20. Spectrometric identification of Organic Compounds, Robert. M. Silverstein, Basseler, Morril (John Wiley and Sons. N.Y).
- 21. Spectroscopic identification of organic compounds. John Dyer, Willy, NY.
- 22. Spectroscopy of Organic Compounds by P. S. Kalsi.
- 23. Techniques and Practice of Chromatography Raymond P. W. Scott, Vol. 70.
- 24. Text book of Pharmaceutical Analysis, K. A. Connors, 3rd Ed., John Wiley & Sons, New York.
- 25. United States Pharmacopoeia-27(NF-22), 2004, United State of Pharmacoppeal convention, INC, 12601 Twinbrook Parkway, Rockville, MD 20852.
- 26. British Pharmacopoeia, 2004, The British Pharmacopoeia commission office, Market Tower, Nine Elms Lane, London.
- 27. Indian Pharmacopoeia-2007, Indian pharmacopoeia commission, Sector-23, Raj Nagar, Ghaziabad.

E-RESOURCES:-

- 1. www.jascoinc.com/
- 2. www.ssi.shimadzu.com
- 3. <u>www.perkinelmer.com</u>
- 4. <u>www.phenomenex.com</u>

Faculty: - Pharmaceutical Sciences

Department: All Discipline

Semester: I

Name of Subject: Biostatistics (Theory)

Subject Code: PGMP102

TEACHING & EVALUATION SCHEME:-

Sr. No	Subject Code	Name of the Subject	(1	Tea Sc Hour	nchin hem s/W	ig e eek)					Evalua	ation S	Schen	ne			
			Т	s	Р	Total	Sessi Exa	onal Im	Theory Unive Exa	rsity m	Total	Sessi Exa	ional am	Practical University Exam		Total	Total
							Mark s	Hrs	Mark s	Hrs		Mark s	Hrs	Mark s	Hrs		
1	PGMP102	Biostatistics	2	-	-	02	15	1	35	2	50	-	-	-	-	-	50

OBJECTIVES:

- To explain students with various Statistical Techniques used to draw conclusions in Experimental Research.
- To emphasize the use of these Techniques to address the problems and issues arising in the discipline of Pharmacy and to find their solutions using Statistical Software.

PREREQUISITES:-

- 10 + 2 level mathematics knowledge.
- B, Pharm. Degree from any institution approved by AICTE or its equivalent.

COURSE OUTLINE:

Sr.	COURSE CONTENTS	HRS
No		
01	Introduction:	02
	Relevance and the scope of Statistics.	
	Difference between 'Descriptive' and 'Inferential' Statistics; Relationship	
	between them	
02	Test of hypothesis	11
	Concepts of hypothesis testing and types of errors. Point and interval estimation	
	including fiducial limits, t-test, Chi square tests, f-test, Z-test.	
	Non parametric test lik: Sign test, Mann-Whitney U test, Wilcoxon sign rank	
	test, Kruskal wallis test	
03	Correlation and regression:	07
	Introduction and Theory, different method of correlation (graphical method,	
	Person's product moment, correlation coefficients, Spearman rank correlation.	
	Regression:	
	Regression line, Determination of Regression coefficients, Multiple regression	
	analysis	
04	ANOVA	05
	Introduction, One Way ANOVA, Two way ANOVA and it's statistical	
	inferences	
05	Every visuantal de sign in aligical tuisla.	0.4
05	Experimental design in clinical trials;	04
	Parallel and crossover designs. Statistical test for bioequivalence. Dose response	
	studies	
06	Introduction to common software	01
	Total	30

LEARNING OUTCOMES:

• Students will able to identify, analyze and solve problems related to biostatistics using statistical software.

 Students can apply biostatics application in order to understand various pharmaceutical process variables, understand significance effect on parameters in clinical trials

TEACHING & LEARNING METHODOLOGY:

- Lectures will be taken in class room with the aid of multi-media presentations / black board or mix of both.
- Assignments based on the course content will be given at the end of the topic.

BOOKS RECOMMENDED:-

- 1. Stanford Bolton, Charles Bon (2004), Pharmaceutical Statistics, Practical and Clinical Applications (Fourth rev. ed) Marcel Dekker, Inc
- 2. Dowdy, S., and Wearden, S. (1991), Statistics for Research (2nd ed.), New York: John Wiley.
- 3. Freund, R. J., and Wilson, W. J. (1997), Statistical Methods (rev. ed.), San Diego, CA: Academic Press
- 4. Miller, R. G., Efron, B., Brown, B. W., and Moses, L. E. (eds.) (1980), Biostatistics Casebook, New York: John Wiley.
- 5. Steel, R. G. D., and Torrie, J. H. (1980), Principles and Procedures of Statistics: A Biometrical Approach (2nd ed.), New York: McGraw-Hill.
- 6. Woolson, R. F. (1987), Statistical Methods for the Analysis of Biomedical Data, New York: John Wiley.
- 7. Wackerly DD, Mendenhall W, Scheaffer RL. Mathematical Statistics with Applications, 7th edition, 2008, Duxbury Press, USA
- Piantadosi S. (2005), Clinical Trials a Methodological Perspective, 2nd edition. John Wiley & Sons.
- 9. Senn S. Cross-over trials in clinical research, 2nd edition. Wiley, 2002.
- 10. Jennison C. and B.W. Turnbull. Group sequential methods with applications to clinical trials. Chapman & Hall, 1999.

Faculty: - Pharmaceutical Sciences

Department: Pharmaceutics & Pharmaceutical Technology

Discipline: 1) Pharmaceutics 2) Pharmaceutical Technology

Semester: I

Name of Subject: Fundamental of Formulation & Product Development (Theory)

(Specialization-I)

Subject Code: PGMP111

Teaching & Evaluation Scheme:-

Sr. No	Subject Code	Name of the Subject	(1	Te: Sc Hou	ach hei irs/ k)	ing me Wee		Evaluation Scheme									
			т	s	Р	Total	Sess Ex	ional am	Theor Uniw Ex	y ersity am	Total	Sessional Exam		Practical University Exam		Total	Total
							Mar ks	Hrs	Mar ks	Hrs		Mar ks	Hrs	Mar ks	Hrs		
1	PGMP111	Fundamental of Formulation & Product Development	4	2	6	12	30	1.5	70	3	100	30	6	70	6	100	200

OBJECTIVE:

- To understand formulation development concept, like preformulation, excipients, stability and dissolution in order to develop safe, effective and stable dosages form.
- To give training at advanced level in preformulation studies of drugs & other requisite aspects.
- To give practical training to students in these aspects.

PREREQUISITES:-

- 1. Basic knowledge in Pharmaceutics.
- 2. B. Pharm. Degree from any institution approved by AICTE or its equivalent.

COURSE OUTLINE:

Sr. No	COURSE CONTENTS	HOURS
01	Preformulation & dosages form design aspects:	06
	Introduction, goals of preformulation, Detailed study of physical,	
	chemical and pharmaceutical parameters influencing formulation of	
	drugs. Compatibility tests. Significance and methods for evaluation	
	of drug-excipient, excipient -excipient and drug containers/closures	
	interactions and incompatibilities.	
02	Polymorphism in pharmaceutical solids:	05
	Application of phase rule to the characterization of polymorphic	
	systems, structural aspect of polymorphism, hydrates and solvents,	
	generation of polymorphs, hydrates, solvates and amorphous solids,	
	methods for the characterization of polymorphs and solvates, effect	
	of polymorphism on solubility and dissolution rate, effect of	
	pharmaceutical processing on drug polymorphs and solvates, impact	
	of polymorphism on quality of lyophilized products.	
03	Partition Coefficient	05
	Pharmaceutical significance of partition coefficient, correlation with	
	in-vivo	
	performance, techniques to estimate log P values, shake flask	
	method, choice of solvent systems, chromatographic determination,	
	theoretical computation using Hansch & Leo/Rekker principle,	
	effect of various variants like temperature, pH, etc. on partition	
	coefficient.	
04	Excipients:	08
	General considerations of excipients used in formulations and	
	factors governing selection.	

	Compatibility issues regarding excipients: drug-excipients and	
	excipient excipient, excipients-package interactions	
	Safety and regulatory issues of excipients	
	International patented excipients. Implication of quantitative	
	selection of each excipient in product devlopment.	
	Study of novel excipients:	
	Superdisintegrants, directly compressible and spray dried diluents,	
	film coating materials, solubilizing agents like surfactants, Cyclic	
	Glucose Polymers, polymeric excipients for controlled release	
	applications, Improved excipients functionality by co processing,	
	Standardization of excipients	
05	Biomaterials:	04
	Types, applications of biomaterials in pharmaceutical formulations	
	& medicine, safety considerations of biomaterials, mechanism of	
	biodegradation.	
06	Solubility and Solubilization	08
	Development of theoretical relationships of prognostic relevance,	
	techniques of solubilization of drugs including surfactant systems,	
	co-solvents, solid dispersions, complexation, inclusion complexes	
	with reference to cyclodextrins, types of cyclodextrins, their	
	pharmaceutical applications and chemical modifications.	
07	Dissolution & it's testing:	08
	(a) Importance, objectives, equipments,	
	(b) Biological classification system (BCS); its significance on	
	dissolution study and application in dosage form development.	
	(c) Selection of dissolution media and conditions.	
	(d) Comparison of dissolution profile by model independent	
	(similarity and dissimilarity factor) and dependent methods.	
08	Stability of drug & dosage forms:	08
	· Degradation of drug in solid state & solid dosage forms,	
	stabilization methods, importance of stability indicating assay in	
	stability evaluation, stability evaluation of disperse systems.	

	· Brief introduction to FDA and WHO guidelines. Detail study of	
	ICH guidelines (Q1A, (R2), Q1B, Q1C, Q1D, Q1E, Q1F, Q5C).	
	· Kinetic principles applied for stability evaluation and their	
	applications in predicting shelf life and half life of pharmaceutical	
	formulations. Importance of accelerated stability study.	
09	Herbal Product Development	03
	Background and present scenario, formulation considerations, major	
	hurdles and challenges, future prospects.	
10	Documentation	05
	Importance of documentation, statutory requirements and procedure	
	for documentation, critical examination of documents.	

Faculty: - Pharmaceutical Sciences

Department: Pharmaceutics & Pharmaceutical Technology

Discipline: 1) Pharmaceutics 2) Pharmaceutical Technology

Semester: I

Name of Subject: Fundamental of Formulation & Product Development (Practical)

(Specialization-I)

Subject Code: PGMP111P

Detailed Syllabus (Practical): To illustrate the topics included under theory

LEARNING OUTCOME:

• To develop the ability to effectively apply knowledge of excipients, dosage forms, preformulation, quality improvements, and documentation of pharmaceutical products and drug delivery systems.

TEACHING & LEARNING METHODOLOGY:

• Through discussion in a class-room, and performing experiments related to Product development studies.

BOOKS RECOMMENDED:-

1. Drug Stability, J. T. Carstensen, Marcel Dekker, New York

2. Theory & Practice of Industrial Pharmacy, L. Lachman, Varghese Publication, Bombay.

3. Modern Pharmaceutics, G.S. Banker and C.T. Rhodes, Marcel Dekker, NY.

M. Pharm. Pharmaceutics - Page 14 of 37

4. Physical Characterization of Pharmaceutical Solids, H. G. Brittain, Marcel Dekker, NY.

5. Physical Pharmacy, A. Martin, Lea and Febiger, Philadelphia.

6. Pharmaceutical dissolution testing, U.V. Banaker, Marcel Dekker, Inc., New York.

7. Pharmaceutical Dosage Forms : Parenteral Medications, Avis K. E., Leon Lachman and H. Lieberman, Marcel Dekker, New York

8. Pharmaceutical Dosage Forms : tablets, Lierberman H. A. and Leon Lachman, , Marcel Dekker, New York

9. Oral lipid based formulations; D.J. Hauss, Informa Healthcare, New York

10. Polymorphism in Pharmacetucial solids: H.G. Brittain, Marcel Dekker, New York

11. Biodegradable polymers as drug delivery systems, edited by M.Chasin, R.langer, Marcel Dekker, New York.

11. Handbook of Preformulations, S. K. Niazi, Informa Healthcare, New York.

12. Pharmaceutical Preformulations & Formulation, edited by Marks Gibson, Interpharm/CRC, Boca Raton, Florida, USA.

E-RESOURCES:-

- 1. www.fda.gov.org
- 2. On line journals

Faculty: - Pharmaceutical Sciences

Department: Pharmaceutics & Pharmaceutical Technology

Discipline: 1) Pharmaceutics 2) Pharmaceutical Technology

Semester: I

Name of Subject: Biopharmaceutics, Pharmacokinetics & Methods in Drug Evaluation (Theory)

(Specialization-II)

Subject Code: PGMP112

Teaching & Evaluation Scheme:-

Sr.	Subject	Name of the		Tea	chin	g]	Evaluat	tion S	Schen	ne			
No	Code	Subject	а	Sc	hem	e aak)											
			(1	IUUI	3/ •••	ur)											
]	Theor	y			I		Total		
							Sess	ional	University Total		Sessional		l University		Total		
			Т	S	Р	Total	Exam		Exam			Exa	am	Exam			
							Mar	Hrs	Mar	Hrs		Mar	Hrs	Mar	Hrs		
							ks		ks			ks		ks			
1	PGMP112	Biopharmaceuti cs, Pharmacokineti cs & Methods in Drug Evaluation	4	2	-	06	30	1.5	70	3	100	-	-	-	-	-	100

OBJECTIVES:-

• To Study the absorption, metabolism, distribution and excretion of drugs. The primary goal of the course related to pharmacokinetics is to provide a conceptual and quantitative background in pharmacokinetic theory and applications. This will be indispensable to pursue studies in clinical pharmacokinetics and which in terms help in drug delivery system design and development of pharmaceutical formulations.

• To familiar students about evaluation of drugs by various methodology in pharmacy.

PREREQUISITES:-

• B. Pharm. degree from any AICTE approved institution or its equivalent

COURSE OUTLINE:

Sr. No	COURSE CONTENTS	HRS
	ADME Characteristics of drug:	08
	Drug Absorption: General consideration, absorption / drug	
01	transport mechanisms, role of sorption promoters, factors affecting	
	absorption, absorption of drug of through routes other then oral, in-	
	vitro, in-situ, in-vivo and cell line (Caco - 2) study methods of	
	determining absorption.	
	• Drug Distribution: Factors affecting drug distribution, protein &	
	tissue binding, Apparent volume of drug distribution	
	• Drug Metabolism (Biotransformation): Biotransformation, factors	
	affecting biotransformation, Phase I & Phase-II reactions	
	• Drug Excretion: Glomerular filtration, tubular secretion, tubular	
	reabsorption, Factors affecting drug excretion.	
02	Pharmacokinetics:	10
	• One compartment and two compartments open model: i.v. bolus	
	administration, i.v. infusion, extra vascular administration	
	Multicompartment model	
	• Application of Pharmacokinetics: new drug development, Design	
	of dosage forms and novel drug delivery systems, Case studies	
	based on pharmacokinetic principles	
	• Determination of various pharmacokinetic parameters	
	• Absorption rate constant, elimination rate constant, biological half	
	life, % drug	
	• metabolized, apparent volume of distribution, excretion rate	

	constant, Clearance (including the concept of renal & non-renal	
	clearance), Kinetics of protein binding and other Pharmacokinetic	
	parameters	
	• Softwares used for determination of pharmacokinetic parameters	
	Pharmacokinetics of Multiple Dosing:	
	• Adjustment of dosage in renal & hepatic impairment,	
	individualization of therapy, therapeutic drug monitoring, Kinetics	
	of sustained release	
03	Non-linear Pharmacokinetics:	02
	Causes of non-linearity, estimation of various parameters and	
	bioavailability of drugs that follow non-linear kinetics	
04	Bioavailability & Bioequivalence:	06
	Objectives of bio-availability & bioequivalence studies, Measurements of	
	bio-availability, Concept of Bioequivalence, Experimental Designs in	
	Bioequivalence study (Cross over, Latin Square, Balance incomplete block	
	design etc), Regulatory aspects of bio-availability and bioequivalence	
	studies for conventional dosage forms and controlled drug delivery	
	systems	
05	In-vitro In-vivo Correlation (IVIVC):	05
	Concept, Methods of establishing IVIVC, Factors effecting IVIVC.	
	Application of IVIVC for biowaivers of immediate release dosage forms.	
	IVIVC for Sustain Release and controlled release dosage forms	
06	Guideline for the use and care of laboratory animals.	02
07	Toxicological evaluation of new chemical entities:	02
	Acute, sub acute and chronic toxicity studies, teratogenicity, mutagenicity	
	and carcinogenic studies.	
08	Techniques in the estimation of enzyme and the endogenous substances in	02
	the body fluids in physiological and pathological condition.	
09	Biological evaluation of following classes of drugs:	18
	(Development of models for disease: in vivo models / in vitro models /	
	cell line studies). Analgesic, antiinflammatory, antiepileptic, antidiabetic,	
	antifertility, antihypertensive, antidyslipidaemic, anticancer, antiasthmatic,	

	antiviral, antibacterial, antifungal, antiparasitic, antiulcer, hepatoprotective,	
	immuno modulatory.	
10	Bioassay of various hormones. New approach in drug discovery (High	02
	throughput Screening-HTS).	
11	Good Clinical Practice (GCP): ICH guidelines (E6R1)	03
	Total	60

LEARNING OUTCOMES:

- Students will be able to predict the effects of various physicochemical, biochemical, physiological and pathological processes on the kinetics and extent of drug absorption, distribution, and elimination.
- Student will be able to learn the basic techniques to evaluate drugs using various animal models for different pathological conditions.

TEACHING & LEARNING METHODOLOGY:

• Faculty member/s shall explain in a class room using black board and multimedia projector

BOOKS RECOMMENDED:-

- 1. Pharmacokinetics, M Gibaldi, Marcel Dekker, Inc., New York.
- 2. Remington's Pharmaceutical Sciences, Mack publishing company, Pennsylvania.

3. Biopharmaceutics and Pharmacokinetics- A Treatise, D.M. Brahmankar and Sunil B. Jaiswal, Vallabh Prakashan Pitampura, Delhi.

4. Clinical Pharmacokinetics, Concepts and Applications, M. Rowland and T. N. Tozer, Lippincott Williams & Wilkins, Philadelphia

5. Biopharmaceutics and Clinical Pharmacokinetics- An introduction; Robert. E. Notari, Marcel Dekker Inc, New York

6. Encyclopedia of Pharmaceutical Technology, James Swarbrick and C.Boylan, Marcel Dekker Inc, New York,

7. Pharmaceutical dissolution testing, U.V. Banaker, Marcel Dekker, Inc., New York.

8. The United States Pharmacopoeia-27 (NF-22),2004, United State of Pharmacoppeal convention, INC, 12601 Twinbrook Parkway, Rockville, MD 20852.

9. Applied Biopharmaceutics and pharmacokinetics, Leon Shargel, Mc Graw Hill,

10. Pharmacokinetics, Welling and Tse, Marcel Dekker, Inc., New York.

11. Biopharmaceutics and Clinical Pharmacokinetics, Niazi, Prentice Hall, London

12. Dose finding in Drug Development, N. Ting, Springer, U.K.

13. Drug disposition & Pharmacokinetics, S.H. Curry, Pharma Med Press, Hyderabad

14. Introduction of Biopharmaceutics & Pharmacokinetics, H. P. Tipnis and M. S. Nagarsenkar, Nirali Prakashan, Pune.

15. Textbook of Biopharmaceutics & Pharmacokinetics, Javed Ali, R. K. Khar and Alka Ahuja, Birla Publication, Delhi.

16. Biopharmaceutics & Pharmacokinetics, Venkateshwarlu, India

17. Drug discovery and evaluation: Pharmacological assays, H. Gerhard Vogel, 2nd edition, 2002.

18. Screening methods in pharmacology Vol-1 & 2, Robert Arnold Turner, 1971, Academic Press.

19. Fundamental of experimental pharmacology, M.N. Ghosh, 971, Scientific Book Agency.

20. Quality control of herbal drugs: an approach to evaluation of botanicals, Pulok K. Mukherjee, 2002, Business horizons.

21. Relevant articles from journals.

22. Drug bioscreening: drug evaluation techniques in pharmacology, Emmanuel B. Thompson, 1990, VCH publisher.

23. Drug absorption studies: in situ, in vitro and in silico models, By Carsten Ehrhardt, Kwang-Jin Kim, 2008.

E-RESOURCES:-

1. www.fda.gov

2. http://www.ich.org